
Build Your Own Quad-Copter

Quad-Copter vs Standard Helicopter

- 4 vertical motors are only moving parts (2 CW, 2CCW)
- Control is achieved by independently varying the thrust of each motor (Lift, Pitch, Roll, Yaw)
- Low moment of inertia—extremely agile

Standard Configurations

Quadcopter

- Simple/Easy to build
- High maneuverability/acro
- Light payload (Go-Pro)
- Susceptible to motor failure
- Most fun to fly!

Hexacopter

- Moderate payload
- Moderate maneuverability
- Very stable
- Flyable with loss of 2-3 motors
- Great aerial photography platform

Octocopter

- Very large payload (professional cameras)
- Extremely stable
- Resistant to motor failure
- Extremely intimidating if operating within close proximity to you!!!

Non-Standard Configurations

Tricopter

- Cheap (3 motors)
- 120° between arms
- Great for FPV
- Requires a tilt servo on one motor for yaw stability and control

<u>Y-6</u>

- Tricopter footprint
- No tilt servo required
- Less efficient then the hexacopter

<u>X-8</u>

- Footprint of quadcopter
- Motor redundancy
- Less efficient then the octocopter
- Power hog

LiPo (Lithium Polymer) Batteries

- Driving force behind popularity of RC aircraft
- High energy storage to weight ratio
- High discharge current

- Lipo Safety
 - Never leave unattended while charging
 - Take special precautions if damaged

Battery Stats

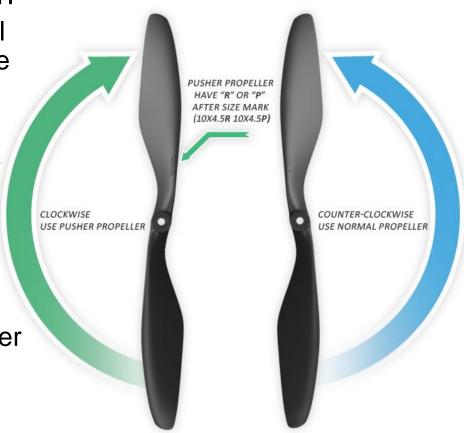
Voltage (# Cells)

- 3.7 volt battery = 1 cell x 3.7 volts (1S)
- 7.4 volt battery = 2 cells x 3.7 volts (2S)
- 11.1 volt battery = 3 cells x 3.7 volts (3S)
- 14.8 volt battery = 4 cells x 3.7 volts (4S)
- 22.2 volt battery = 6 cells x 3.7 volts(6S)a
- Charged voltage is 4.2 volts/cell
- NEVER discharge below 3 volts/cell

Capacity

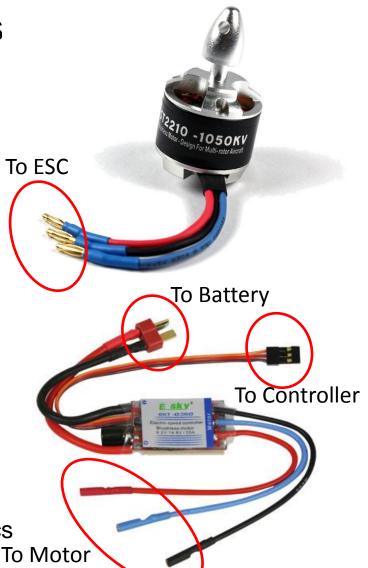
- How much energy the battery can hold
- Measured in mAh (milliamp hours)
- 2200mAh → Can pull 2.2A for 1 hour
- 2200mAh → Can pull 15A for ~9 min
- Higher capacity = longer flight times + weight

Discharge Rate


- Called the "C" rating
- Maximum Current load = C x capacity
- 66A = 2200 mAh x 30C
- Some batteries have a burst rating

Charge Rate

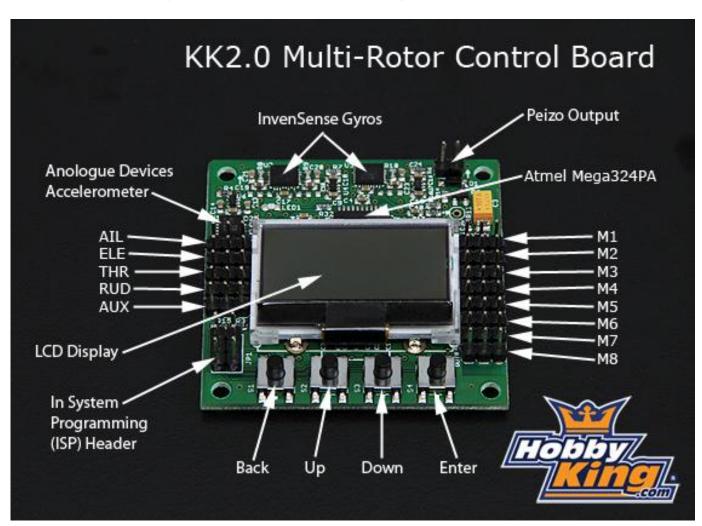
- 1C for long lasting batteries
- Charge 2200mAh @ 2.2A
- Only use LiPo charger

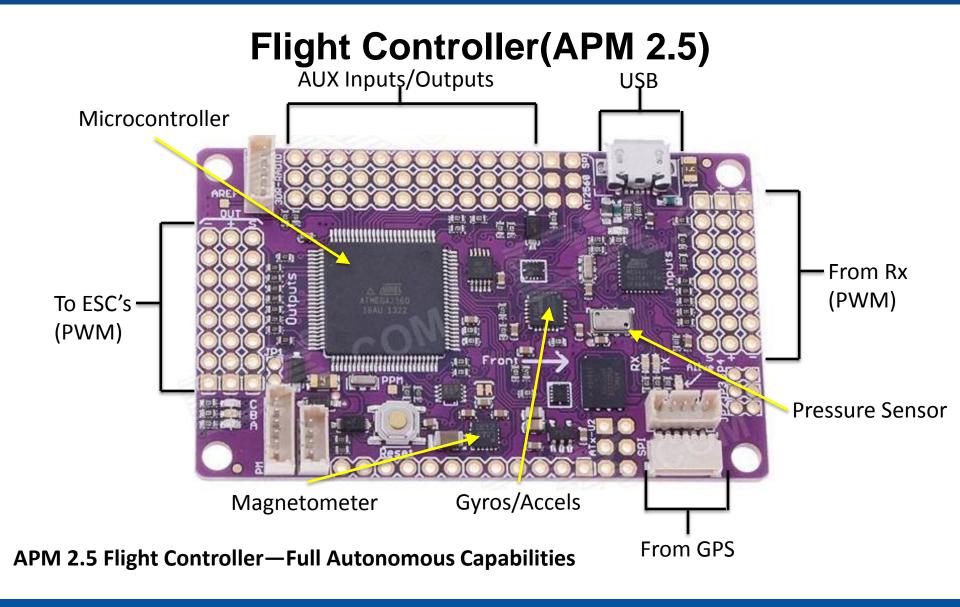

Propellers (Prop)

- Classified by length and pitch
 - Ex: 10x4.5 (10 inches long, will move 4.5 inches forward in one revolution)
- Optimized for one direction
 - CW and CCW require different props
- Choosing a prop
 - Research other quad setups
 - Higher length and pitch values mean more air movement, lower RPM, and higher current draw
 - Trial and error

Motors/ESCs

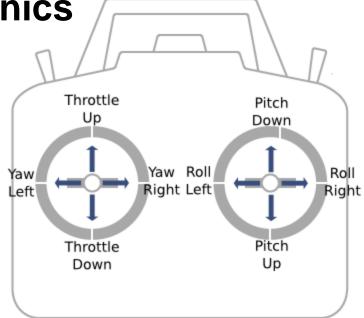
- Brushless Motors
 - Main Spec: KV (RPM/volt)
 - Low KV=Low RPM, High Torque
 - More efficient then brushed motors
 - Require external controller
- ESC (Electronic Speed Controller)
 - Main battery connector (+/-)
 - Motor timing circuitry
 - Driven by PWM signal from flight controller
 - BEC (Battery eliminator circuit)
 - Usually 5 volts to power other electronics




Flight Controller

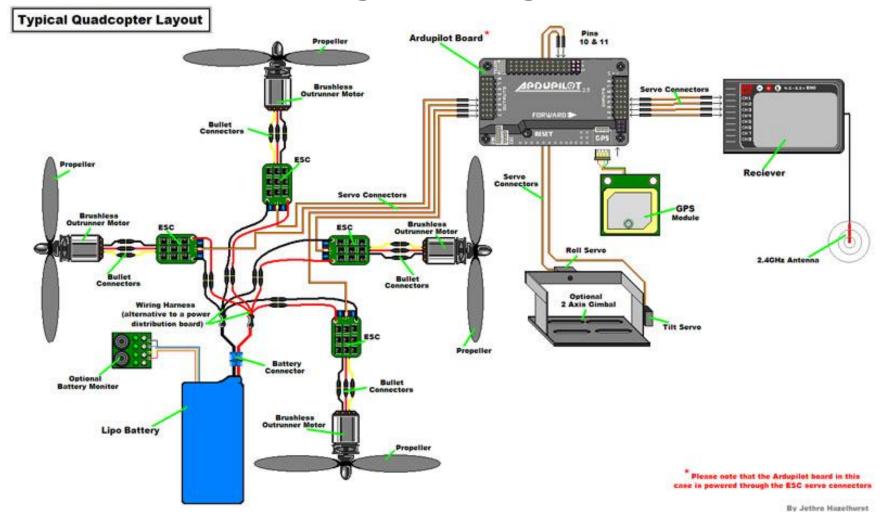
- Multi-copters are inherently unstable and require computer control for stable flight. Fly-by-wire
- Functions
 - Input: Desired movement from remote user or navigation routines
 - Output: Update all ESC control signals in real-time to control motor speeds
 - Aux: Camera Stabilization, Payload Operations, Lighting
- Sensors
 - (R) 3-axis Gyro (angular rotation about axis)
 - (R) 3-axis Accelerometer (acceleration along axis)
 - Pressure Sensor (altitude)
 - GPS
 - 3-axis magnetometer
- Microcontroller
 - Sensor fusion
 - Feedback control loop ~200-1000Hz
 - Typically reprogrammable via PC interface

KK 2.0 Multi-rotor Control Board


Other RC Electronics

Transmitter

- Minimum 4 channels (roll, pitch, yaw, throttle)
- Extra channels desired for mode selection
- KK2.0 5th channel used for auto level

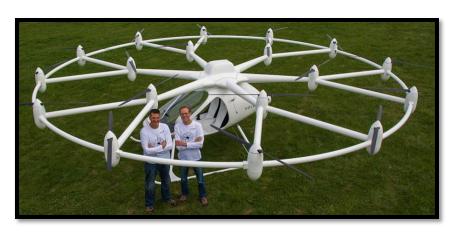

Receiver

- Wirelessly communicates with transmitter
- Provides PWM signals to flight controller that represent transmitter stick positions

Putting It All Together

Aerial Photography

- Search and Rescue
- Examine Pipe/Powerline/Fence/Etc
- Film Making
- FPV (First Person View)
- Exploration
- Situational Awareness
- Surveillance


Video

Play aerial video we took since I never put it on Youtube

Other Applications

- Transportation
 - Delivery to hard to reach places
 - Small manned aircraft


- Communications
 - Emergency communications
 - Mesh networking

Cooperative Flying Robots

Multiple copters working together

Regulations

- Nobody is really sure!!!!
- FAA has "stated" that sUAS (small unmanned aerial systems) are illegal for commercial purposes based on interpretation of other laws
 - FAA made an aerial photography company cease and desist
 - Decision was overturned by federal court
- AC 91–57 Model Aircraft Operating Standards (1981)
 - < 400 ft
 - Line of sight
 - AC (Advisory Circulars) are guidance and not enforceable by law
- However, Regulations are coming (Sept. 2015)
- Be safe and don't do anything stupid!!!