From Makers Local 256
Revision as of 21:27, 27 August 2012 by Tylercrumpton (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Collecting parts
Born On:
21:27, 27 August 2012 (CDT)
Last Updated:
21:27, 27 August 2012 (CDT)


B.R.U.T.U.S. stands for "Bob-Rousing Underfoot Tactical Utility Surveyor", and is a teleoperated robotic platform that is capable of exploring and investigating a home, as well as being able to provide food and water to the cat when we are away. BRUTUS will also serve as an experiment to determine whether our cat can be trained to enjoy the company of a mechanical creature, using treats and cat toys as positive incentives.


The features I would like to include in this project are:

  • Internet-capable control over WiFi
  • Manipulator arm to interact with objects in the environment
  • One or more webcams to allow teleoperational control of the robot
  • Easy-to-use charging station, so you can park and charge the robot when the batteries run low
  • Battery-level monitoring, for the above reason
  • Flashlight for dark situations
  • Speaker to talk to anyone who may interact with the robot
  • Food/water/treat dispenser for Bob the Cat
  • Laser-pointer on manipulator arm to play with Bob the Cat


The robot platform/chassis will most likely be laser-cut from plywood, as it is cheap and light-weight compared to acrylic sheet. No concrete design has been created at this point.


A version of jjshortcut's laser-cut robot arm will be used to create the manipulator arm. A different gripper will probably be used, or the current gripper will be modified to allow easier grasping of oddly-shaped objects.


CPU Host: Raspberry Pi

  • The Raspberry Pi will be used to run the web-server that handles robot control and audio/video transmission. It will also be able to update the Arduino's program, if needed.
  • Cost: $45 (purchased)


  • A cheap USB webcam will serve as the robot's vision system, initially. More cameras can be easily added if needed/wanted.
  • Cost: $6.75 (purchased)

Microcontroller: Arduino Uno

  • The Arduino will be in charge of handling motor control, arm movements, food dispensing mechanisms, flashlight/laser control, and battery monitoring. The GPIO on the Raspberry Pi can be used for many of these features, but as I do not have a logic-level shifter on hand (but do have an Uno), this works out to be the simpler, cheaper solution.
  • Cost: $15 (purchased)

Motor Driver: L293 Compact Motor Driver

  • This is the same motor controller that will be used in the C.A.E.S.A.R. BOT. It's cheap, easy-to-use, and so handy.
  • Cost: $4.29 (purchased)


  • I have four MG995 55g servos that I will be using for the joints in the robot arm. A tiny 9g servo or two will be used to rotate the wrist and close the gripper.
  • Cost: $15.50 total for the four MG995's (purchased)
  • Cost: $4.97 total for two 9g servos (purchased)

Drive Motors


  • I have yet to decide on a battery source, but I will probably go with a cheap LiPo or NiMH rechargeable RC battery. I'm leaning towards NiMH for charging reasons, but I'll make that decision later. Some considerations: with the arm, Raspberry Pi, WiFi adapter, Arduino, camera, servos, motors, etc. the system may draw up to 2-3A of continuous current.

Progress Log


Design Files